第三百二十九章 星辰阵图-赫罗图﹙三﹚(2 / 2)

加入书签

f:黄白色

温度在六千至七千五百k之间,有离子化的金属谱线,氢的谱线转趋微弱但仍很明显,铁、铬等自然态的金属谱线开始出现。如f0的钙离子线强烈,氢的谱线虽已减弱,但中性氢原子谱线与一阶金属离子线都很明显。

g:黄色

温度在五千至六千k之间,有游离的金属、钙谱线及部份的金属谱线,氢原子的谱线更为微弱,分子谱线(0已有很强的分子带,尤其是氧化锑、钙原子的谱线强烈,红色区呈现连续光谱;钙原子的谱线很强,氧化锑的强度超过钙。

此外,在巨星的区域内因为还有其他的元素参与核反应,所以还有r、s、n三种在巨星分支上才会用的分类;还有些恒星因为有些特殊谱线而不易归类于其中,也会另外加上注解用的字母作为区别。

三、元素周期表

化学元素周期表是根据原子序数从小至大排序的化学元素列表。列表大体呈长方形,某些元素周期中留有空格,使特性相近的元素归在同一族中,如卤素、碱金属元素、稀有气体(惰性气体或贵族气体)、放射性元素等。这使周期表中形成元素分区且分有七主族、七副族与零族、八族。由于周期表能够准确地预测各种元素的特性及其之间的关系,因此它在化学及其他科学范畴中被广泛使用,作为分析化学行为时十分有用的框架。现代的周期表由俄国化学家门捷列夫于一八六九年发现,用以展现当时已知元素特性的周期性。

按照元素在周期表中的顺序给元素编号,得到原子序数。原子序数跟元素的原子结构有如下关系:

质子数=原子序数=核外电子数=核电荷数

利用周期表,门捷列夫成功的预测当时尚未发现的元素的特性(镓、钪、锗)。一九一三年英国科学家莫色勒利用阴极射线撞击金属产生x射线,发现原子序越大,x射线的频率就越高,因此他认为核的正电荷决定了元素的化学性质,并把元素依照核内正电荷(即质子数或原子序)排列。后来又经过多名科学家多年的修订才形成当代的周期表。

元素周期表**有一八十八种元素。将元素按照相对原子质量由小到大依次排列,并将化学性质相似的元素放在一个纵列。每一种元素都有一个序号,大小恰好等于该元素原子的核内质子数,这个序号称为原子序数。在周期表中,元素是以元素的原子序排列,最小的排行最前。表中一横行称为一个周期,一列称为一个族(8、9、10纵行为一个族)。

原子的核外电子排布和性质有明显的规律性,科学家们是按原子序数递增排列,将电子层数相同的元素放在同一行,将最外层电子数相同的元素放在同一列。

元素周期表有七个周期,十六个族。每一个横行叫作一个周期,每一个纵行叫作一个族。这七个周期又可分成短周期(1、2、3)、长周期(4、5、6)和不完全周期(7)。共有十六个族,又分为七个主族(1a2a4a6a7a),7个副族(1b3b5b7b),一个第8族(包括三个纵行),一个零族。

元素在周期表中的位置不仅反映了元素的原子结构,也显示了元素性质的递变规律和元素之间的内在联系。使其构成了一个完整的体系称为化学发展的重要里程碑之一。

同一周期内,从左到右,元素核外电子层数相同,最外层电子数依次递增,原子半径递减(零族元素除外)。失电子能力逐渐减弱,获电子能力逐渐增强,金属性逐渐减弱,非金属性逐渐增强。元素的最高正氧化数从左到右递增(没有正价的除外),最低负氧化数从左到右递增(第一周期除外,第二周期的o、f元素除外)。

同一族中,由上而下,最外层电子数相同,核外电子层数逐渐增多,原子序数递增,元素金属性递增,非金属性递减。

元素周期表的意义重大,科学家正是用此来寻找新型元素及化合物。

赫罗图作为星辰图可与修真法阵结合成为一个可以调动周天星辰之力的大阵,而元素周期表则可作为寻找炼器材料的参考。(未完待续。。)<div id="center_tip"><b>最新网址:www.</b>

↑返回顶部↑

书页/目录